236 research outputs found

    A comparison analysis of ble-based algorithms for localization in industrial environments

    Get PDF
    Proximity beacons are small, low-power devices capable of transmitting information at a limited distance via Bluetooth low energy protocol. These beacons are typically used to broadcast small amounts of location-dependent data (e.g., advertisements) or to detect nearby objects. However, researchers have shown that beacons can also be used for indoor localization converting the received signal strength indication (RSSI) to distance information. In this work, we study the effectiveness of proximity beacons for accurately locating objects within a manufacturing plant by performing extensive experiments in a real industrial environment. To this purpose, we compare localization algorithms based either on trilateration or environment fingerprinting combined with a machine-learning based regressor (k-nearest neighbors, support-vector machines, or multi-layer perceptron). Each algorithm is analyzed in two different types of industrial environments. For each environment, various configurations are explored, where a configuration is characterized by the number of beacons per square meter and the density of fingerprint points. In addition, the fingerprinting approach is based on a preliminary site characterization; it may lead to location errors in the presence of environment variations (e.g., movements of large objects). For this reason, the robustness of fingerprinting algorithms against such variations is also assessed. Our results show that fingerprint solutions outperform trilateration, showing also a good resilience to environmental variations. Given the similar error obtained by all three fingerprint approaches, we conclude that k-NN is the preferable algorithm due to its simple deployment and low number of hyper-parameters

    Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    Get PDF
    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design

    Addressing Inequities in Urban Health: Do Decision-Makers Have the Data They Need? Report from the Urban Health Data Special Session at International Conference on Urban Health Dhaka 2015

    Get PDF
    Rapid and uncontrolled urbanisation across low and middle-income countries is leading to ever expanding numbers of urban poor, defined here as slum dwellers and the homeless. It is estimated that 828 million people are currently living in slum conditions. If governments, donors and NGOs are to respond to these growing inequities they need data that adequately represents the needs of the urban poorest as well as others across the socio-economic spectrum. We report on the findings of a special session held at the International Conference on Urban Health, Dhaka 2015. We present an overview of the need for data on urban health for planning and allocating resources to address urban inequities. Such data needs to provide information on differences between urban and rural areas nationally, between and within urban communities. We discuss the limitations of data most commonly available to national and municipality level government, donor and NGO staff. In particular we assess, with reference to the WHO’s Urban HEART tool, the challenges in the design of household surveys in understanding urban health inequities. We then present two novel approaches aimed at improving the information on the health of the urban poorest. The first uses gridded population sampling techniques within the design and implementation of household surveys and the second adapts Urban HEART into a participatory approach which enables slum residents to assess indicators whilst simultaneously planning the response. We argue that if progress is to be made towards inclusive, safe, resilient and sustainable cities, as articulated in Sustainable Development Goal 11, then understanding urban health inequities is a vital pre-requisite to an effective response by governments, donors, NGOs and communities

    Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2

    Get PDF
    The new version of the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2) compiles gaseous and particulate air pollutant emissions, making use of the same anthropogenic sectors, time period (1970–2012), and international activity data that is used for estimating GHG emissions, as described in a companion paper (Janssens-Maenhout et al., 2017). All human activities, except large scale biomass burning and land use, land-use change, and forestry are included in the emissions calculation. The bottom-up compilation methodology of sector-specific emissions was applied consistently for all world countries, providing methodological transparency and comparability between countries. In addition to the activity data used to estimate GHG emissions, air pollutant emissions are determined by the process technology and end-of-pipe emission reduction abatements. Region-specific emission factors and abatement measures were selected from recent available scientific literature and reports. Compared to previous versions of EDGAR, the EDGAR v4.3.2 dataset covers all gaseous and particulate air pollutants, has extended time series (1970–2012), and has been evaluated with quality control and quality assurance (QC and QA) procedures both for the emission time series (e.g. particulate matter – PM – mass balance, gap-filling for missing data, the split-up of countries over time, few updates in the emission factors, etc.) and grid maps (full coverage of the world, complete mapping of EDGAR emissions with sector-specific proxies, etc.). This publication focuses on the gaseous air pollutants of CO, NOx, SO2, total non-methane volatile organic compounds (NMVOCs), NH3, and the aerosols PM10, PM2.5, black carbon (BC), and organic carbon (OC). Considering the 1970–2012 time period, global emissions of SO2 increased from 99 to 103&thinsp;Mt, CO from 441 to 562&thinsp;Mt, NOx from 68 to 122&thinsp;Mt, NMVOC from 119 to 170&thinsp;Mt, NH3 from 25 to 59&thinsp;Mt, PM10 from 37 to 65&thinsp;Mt, PM2.5 from 24 to 41&thinsp;Mt, BC from 2.7 to 4.5&thinsp;Mt, and OC from 9 to 11&thinsp;Mt. We present the country-specific emission totals and analyze the larger emitting countries (including the European Union) to provide insights on major sector contributions. In addition, per capita and per GDP emissions and implied emission factors – the apparent emissions per unit of production or energy consumption – are presented. We find that the implied emission factors (EFs) are higher for low-income countries compared to high-income countries, but in both cases decrease from 1970 to 2012. The comparison with other global inventories, such as the Hemispheric Transport of Air Pollution Inventory (HTAP v2.2) and the Community Emission Data System (CEDS), reveals insights on the uncertainties as well as the impact of data revisions (e.g. activity data, emission factors, etc.). As an additional metric, we analyze the emission ratios of some pollutants to CO2 (e.g. CO∕CO2, NOx∕CO2, NOx∕CO, and SO2∕CO2) by sector, region, and time to identify any decoupling of air pollutant emissions from energy production activities and to demonstrate the potential of such ratios to compare to satellite-derived emission data. Gridded emissions are also made available for the 1970–2012 historic time\ud series, disaggregated for 26 anthropogenic sectors using updated spatial proxies. The analysis of the evolution of hot spots over time allowed us to identify areas with growing emissions and where emissions should be constrained to improve global air quality (e.g. China, India, the Middle East, and some South American countries are often characterized by high emitting areas that are changing rapidly compared to Europe or the USA, where stable or decreasing emissions are evaluated). Sector- and component-specific contributions to grid-cell emissions may help the modelling and satellite communities to disaggregate atmospheric column amounts and concentrations into main emitting sectors. This work addresses not only the emission inventory and modelling communities, but also aims to broaden the usefulness of information available in a global emission inventory such as EDGAR to also include the measurement community. Data are publicly available online through the EDGAR website http://edgar.jrc.ec.europa.eu/overview.php?v=432_AP and registered under https://doi.org/10.2904/JRC_DATASET_EDGAR.</p

    Gaining insight into the Clinical Practice Guideline development processes: qualitative study in a workshop to implement the GRADE proposal in Spain

    Get PDF
    BACKGROUND: The GRADE method represents a new approach to grading the quality of evidence and strength of recommendations in the preparation of Clinical Practice Guidelines (CPG). In the context of a pilot study to assess the implementability of the system in Spain, we considered it relevant to gain an insight into the significance of the perceptions and attitudes expressed by the actual experts participating in the system try-out. METHODS: Qualitative research with an ethnographic approach, through non-participant observation and focus groups within the context of a consensus workshop in which 19 CPG experts participated to evaluate the GRADE proposal using 12 evidence tables taken from hypertension, asthma and arthritis CPGs. The interventions were recorded, under a guarantee of confidentiality. The transcriptions and field notes were analyzed, based on a sociological discourse analysis model, and the provisional findings were re-sent to participants in order to improve their validity. RESULTS: 1) Certain problems over procedure and terminology hindered the acceptance of this new method as a common reference system for the preparation of CPGs. 2). A greater closeness to clinical practice was accompanied by concerns over value judgments and subjectivity, with a demand for greater explicitness in the consensus process. 3). The type of "evidence" on which the guidelines are based, how and by whom the evidence is prepared, and what the role of the different actors should be, all constitute unresolved concerns in the CPG preparation and implementation processes. 4). The grading process is not neutral: professional background, prior experience and the degree of leadership all condition the participants' input and interactions. CONCLUSION: The findings obtained allow the quantitative evaluation to be better interpreted and, in turn, go beyond the particularities of the GRADE method. Adaptation to the complexities of clinical practice, the need for carefully designed multi-disciplinary work and the reflexivity present in the CPG preparation process, all represent lines of debate that are necessary to improve the CPG quality in the Spanish health care sector

    Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress

    Get PDF
    Cardiac progenitor cells (CPCs) are a promising autologous source of cells for cardiac regenerative medicine. However, CPC culture in vitro requires the presence of microenvironmental conditions (a complex array of bioactive substance concentration, mechanostructural factors, and physicochemical factors) closely mimicking the natural cell surrounding in vivo, including the capability to uphold reactive oxygen species (ROS) within physiological levels in vitro. Cerium oxide nanoparticles (nanoceria) are redox-active and could represent a potent tool to control the oxidative stress in isolated CPCs. Here, we report that 24 h exposure to 5, 10, and 50 !g/mL of nanoceria did not a!ect cell growth and function in cardiac progenitor cells, while being able to protect CPCs from H2O2-induced cytotoxicity for at least 7 days, indicating that nanoceria in an e!ective antioxidant. Therefore, these "ndings con"rm the great potential of nanoceria for controlling ROS-induced cell damage
    • …
    corecore